

Accident Data and Causal Analysis

IRF India 6th *Webinar: Accident/Crash Data Collection & Management*

Ravishankar Rajaraman, Technical Director, JP Research India Pvt. Ltd. 30 Jun 2021

FIRST ON-SITE CRASH INVESTIGATION STUDY NH45, KANCHIPURAM DIST (2008)

- 75 km stretch of NH45 from Otteri to Acharapakkam (Kanchipuram dist).
- 32 accidents investigated on-site in 45 days.

4th IRF Regional Conference on Accident Prevention: Road Safety Measures 23-24 Oct 2009

- No head-on collisions observed due to wide median.
- Problem:

Front-Rear Collisions with trucks as "leading" vehicles.

• Cause: (Pre-accident condition of "leading" trucks)

Trucks slowing down, stopping/parking or breaking down.

- Infrastructure:
 - U-turn (Gap in median) design.
 - Lack of acceleration and deceleration lanes.
 - Insufficient shoulder width.
 - Highway design does not consider truck dimensions and turning radius.

Source: IRF India website

https://www.indiairf.com/IRF%20CONFERENCE%20%20PROCEEDINGS/Presentations%20from%20Technical%20Sessions/Ravishankar%20Rajaraman.pdf

TODAY, 13 YEARS LATER... INDIA'S ONLY IN-DEPTH ROAD ACCIDENT DATABASE

- Stored and analyzed in a relational database with in-depth data on 5000+ road accidents and counting.
 - Nationally representative sample for a period of 9 years (2011-2019).

Personal identification such as names, vehicle regn, contact numbers, etc. are NOT stored in the analytical database.

POLICE ACCIDENT DATA COLLECTION

- Extensive experience of collecting and coding police accident data.
- Over 40,000 police accident reports coded in a standardized format from these states.
 - Tamil Nadu
 - Karnataka
 - Maharashtra
 - Gujarat
 - West Bengal
 - Rajasthan
 - Delhi
 - Haryana
 - Kerala

POLICE ACCIDENT DATA HELPS IN IDENTIFYING...

Source: iRAP Baseline Data Collection Report – Gujarat Phase (2011-12); Slides from JP Research presentation at GRSF, World Bank Workshop, 4-7 June 2013

POLICE ACCIDENT DATA HELPS IN IDENTIFYING...

Source: JP Research Jaipur Accident Investigation Report (2019)

Pre-crash events

	GOING STRAIGHT / CROSSING VEHICLE					
TURNING/ CROSSING VEHICLE	GOING STRAIGHT	STRAIGHT STRAIGHT STRAIGHT CROSSING		REVERSING		
	- Same direction	- Opposite Direction	- Unknown direction	STREET		
Turning Left	4	0	0	1	1	
Turning Right	66	49	11	3	0	
Turning unknown direction	6	0	13	0	0	
Crossing street	0	0	0	49	0	
Reversing	0	0	1	0	0	
Stopped for crossing/turning	2	0	0	0	0	

Table 4-7 Pre-Crash Manoeuvres of Vehicles in Side/Angle Impact CollisionsSource: Kerala State Transport Project, Final Report by TRL and JP Research

LIMITATION OF POLICE ACCIDENT DATA: ALL CONTRIBUTING FACTORS ARE NOT CAPTURED

CAUSAL ANALYSIS USING RASSI DATA HADDON MATRIX APPROACH

Purpose of scientific crash investigation is to identify all the failures in each of these 9 cells.

		FACTORS			
PHASES		HUMAN	VEHICLE	INFRASTRUCTURE	
PRE-CRASH	Crash prevention	 Information Attitudes Impairment Police enforcement 	 Roadworthiness 2 Working lights Good brakes Handling Speed control 	 Road design and layout Speed limits Pedestrian Facilities 	
CRASH	Injury prevention during the crash	 Use of safety systems 	 Crash worthiness Crash protective design Occupant restraints Other Safety devices 	 Crash protective roadside objects 	
POST-CRASH	Life Sustaining	First-aid skillAccess to medics	Ease of accessFire risk	 Rescue facilities Congestion	

CAUSAL ANALYSIS USING RASSI DATA HADDON MATRIX APPROACH

		FACTORS			
PHASES		HUMAN	VEHICLE	INFRASTRUCTURE	
PRE-CRASH	Crash Prevention	Car – Violation of right of way Tipper – Overloading	 Roadworthiness Working lights Good brakes Handling Speed control 	Vision obstruction due to median plantation and fences	
CRASH	Injury prevention during the crash	• Use of safety systems	Car – Passenger Compartment Intrusion	 Crash protective roadside objects 	
POST-CRASH	Life Sustaining	Car – Improper accident management	Car – Occupant Entrapment	Rescue facilitiesCongestion	

Which failure will you address first?

CAUSAL ANALYSIS USING RASSI DATA KOLKATA CITY - INFRASTRUCTURE FACTORS

Percentage

Influence

72%

28%

Percentage

influenced

100%

21%

8%

CAUSAL ANALYSIS USING RASSI DATA KOLKATA CITY – IMPROVING ROAD MARKINGS

- For every fatal accident, Kolkata Traffic Police (KTP) was provided a report with infrastructure counter measures.
- Counter measures mainly focused on repositioning and maintaining lane lines and stop lines.
- KTP has a Road Marking and Signage team for implementation.
- Other measures, not in their control, were forwarded to concerned authorities.

- Poor placement of road markings
- Inappropriate road user behavior

KOLKATA CITY – IMPROVING ROAD MARKINGS

Year	Fatalities	% Reduction from 2015
2015	413	-
2016	407	1.5%
2017	329	20%
2018	294	29%
2019	267	35%

Source: Kolkata Traffic Police

- Proper placement of road markings
- Improved road user behavior through effective enforcement

RASSI crash data analysis indicates that a lot is still to be done to reduce fatalities further. Footpath width and surface quality, traffic signal timings, sight distance issues due to median plantation, bus stop locations, etc.

Image Source: JP Research, Kolkata

SMALL DETAILS MATTER...

JP RESEARCH INDIA PVT LTD

CAUSAL ANALYSIS USING RASSI DATA MUMBAI-PUNE EXPRESSWAY (2012-2014)

Human (55%)	Vehicle (81%)	Infrastructure (36%)	
Seat belt not used (52%)	Passenger Compartment Intrusion – Other (54%)	Object impact – roadside/median - manmade structures (24%)	
Speeding (30%)	Seatbelts not available/usable (18%)	Roadside – Steep slope/Drop off (8%)	
Driver sleep / Fatigue (29%)	Passenger Compartment Intrusion – Underride/Override (17%)	Sharp curvature (8%)	

CAUSAL ANALYSIS USING RASSI DATA MPEW - INFRASTRUCTURE FACTORS (2012-2014)

S. No	Contributing factor	No. of Fatal Victims (Average per year)	No. of Injured Victims (Average per year)
1	Narrow/No shoulder	19	66
2	Roadside/Median concrete structure	9	24
3	Poor/ineffective road signage	6	17
4	Roadside steep slope/drop-off	5	24
5	Sharp road curvature	5	18
6	Unguarded bridge pillar	4	2
7	Unguarded Bridge/Jersey wall	3	5
8	Gaps-in-median	2	16
9	Unguarded underpass	2	5
10	Entry/Exit road	2	1
11	Driver vision obstruction	1	4
12	Roadside trees	1	2
13	Curb stones	0	6
14	Guardrail end taper	0	2
15	Flower pots in the median	0	1

Guardrails are a solution for the 4 problems identified. But some locations with guardrails did not show effectiveness.

Image Source: RASSI Database

Table Source: MPEW Road Safety Survey Report (2015), http://savelifefoundation.org/wp-content/uploads/2016/12/V3_MPEW-Road-Safety-Survey-Report_SC2-1.pdf

CAUSAL ANALYSIS USING RASSI DATA MPEW - WHY ARE GUARDRAILS INEFFECTIVE?

Guardrail run-out length too short

"The barrier shall be extended at full height <u>not less than **30 m** in</u> <u>advance of the hazard</u> on the approach side, and shall continue at full height for 7.5 m beyond the hazard on the departure side."

IRC:SP:99-2013, 10.7.5.b

"End treatment shall be such that it does not spear, vault or roll a vehicle for head on or angled impacts. The end treatment shall be as per manufacturer's system and satisfying the test standards as perEN1317 or NCHRP350."

CAUSAL ANALYSIS USING RASSI DATA MPEW - EFFECTIVE GUARDRAIL RUNOUT LENGTH

Determination of crash barrier runout lengths for expressways in India based on crash data analysis. Vernon Chinnadurai, Ravishankar Rajaraman, Muddassar Patel

Source: "Determination of crash barrier runout lengths for expressways in India based on crash data analysis.", JP Research, IRF World Road Meeting 2017

CAUSAL ANALYSIS USING RASSI DATA MPEW – BEFORE/AFTER ANALYSIS

Contributing Infrastructure Factors	20)16	2017 20)18	
(Mumbai-Pune Expressway)	Killed	Serious	Killed	Serious	Killed	Serious
Roadside/Median Concrete Structure	15	28	0	0	0	6
Unguarded Overhead Bridge Pillars	4	2	0	0	1	2
Unguarded Bridge/Jersey Wall	3	5	1	3	0	0
Unguarded Underpasses	6	9	0	0	0	0

Source: RASSI Database

Effect on overall fatalities on MPEW

Year	Killed	% Reduction from 2016
2016	151	-
2017	105	30%
2018	110	27%
2019	95	37%

Source: Maharashtra State Highway Police https://highwaypolice.maharashtra.gov.in/en/reports/

SUMMARY

1. Police data helps in identifying road safety problems.

• Crash configurations, Collision partners, Locations, Pre-crash events, etc.

2. In-depth scientific crash data <u>helps in understanding</u> road safety problems.

- Causal analysis using Haddon Matrix
- Cases studies were causal analysis using RASSI crash data
 - Kolkata city experience road markings and enforcement improved intersection safety
 - Mumbai-Pune Expressway experience effective guardrails reduced run-off road fatalities

3. Share learnings from data-driven approaches.

- Create a baseline and conduct before/after analysis for effectiveness of implemented measures
- Cite data sources clearly

GOOD QUALITY CRASH DATA

DATA-DRIVEN ACTION

TARGETED IMPROVEMENTS

"THE ULTIMATE PURPOSE OF COLLECTING DATA IS TO PROVIDE A BASIS FOR ACTION OR A RECOMMENDATION." ~ W. EDWARDS DEMING

THANK YOU!

www.jpri.in

www.rassi.in