सुस्वागतम् సుస్వాగతం સુસ્વાગતમ সুস্বাগতম ಸುಸ್ವಾಗತ സുസ്വാഗതം সুস্বাগতম ਸਆਗਤਮ सुस्वागतम् रंहर्ण آمديد

Ministry of **Electronics &** Information

Technology

Indigenously developed ITMS ^{ฏ ซุ อุ อุ อ}มุ and its use cases

CDAC ानादेव त के

Centre for Development of Advanced Computing - C-DAC

Vision: To emerge as the premier R&D Institution for the design, development and deployment of world class electronic and ICT solutions for economic & human advancement.

Premier R&D organization of the Ministry of Electronics & Information Technology (MeitY) to carry out R&D in ICT, Electronics & Associated Domains

strate Clour mart Cities Defen Secto e-Sign Pramaan Power Sector cloud ICTE Services APPLICATIONS RMANCA cloud Agriculture Health Car Super Computii RESEARCH pnoi AI/ML/DI

Technical Expertise

- High Performance Computing
- Artificial Intelligence & Multilingual Computing and Heritage Computing
- Microprocessor & Professional Electronics
- Intelligent Transportation System
- Health Informatics
- Cyber Security & Cyber Forensics
- Software Technologies
 - e-Governance / Geo-informatics
 - Blockchain Technologies
- 5G, IoT, SDN, Edge Computing
- Education and Training

Intelligent Traffic Management System

C-DAC is the major ITS Technology Provider in the Country

• Time-tested ITS Products

- Solar Power Operated Vehicle Actuated Traffic Signal Controller (WiTraC/CUTE)
- Adaptive Traffic Control System (ATCS) capable of handling non-lane based, mixed traffic flow conditions (TraMM/CoSiCoSt)
- Differently able friendly Pedestrian Accessible Controller (PeSCo)
- Emergency Service Vehicle Priority System (EmSerV)
- Red Light Enforcement System (iRIDS)
- Off-street Parking Management System (ePARK)

SI. No	Title	Collaboration
1	Promoting Road Safety through Deployment of Driver Assistance and Warning System	IIT Madras
2	Development of a Bus Priority System at Signalized Intersections using V2I Communication	IIT Madras
3	Departure Time Planner using V2V and V2I Communication	IIT Madras
4	Data-driven Models and Decision Support Tools for Improved Transit Reliability in Indian Cities	IIT Madras IISc Bangalore
5	Development of Smart Vision Sensors for Road traffic and Industrial applications	C-DAC (T)
6	Development of Common Service Layer based on Global standard for Intelligent Transportation Systems	C-DAC (T)
7	Development of Desktop-Based Driving Simulator for Non-Lane Based Mixed Traffic System	IIT Bombay

Wireless Traffic Signal Controller (WiTraC)

- Controls signal lamps over wireless medium
- Supports Remote Monitoring and Management of Signal (TraMM)
- ATCS Compatible (CoSiCoSt)
- GPS Enabled
- Supports above ground and inductive loop vehicle detection
- Solar Power Operated
- Pole mountable
- IEC 60068 (ERTL Certified)

ATCS compatible Solar Power operable Flexible Mode of Operation

- Pre-timed
- Vehicle Actuated
 - With or without Stage Skipping
- Semi-Actuated
 - With or without Stage Skipping
- Time of Day (ToD) Synchronization
 - Pre-timed and Vehicle Actuated
- Adaptive Traffic Control System
- Combination of the above modes

Model:CUTE

ATCS Software

Implementation sites for ATCS

- C-DAC's expertise in turnkey implementations
 - Pune (2006)
 - Jaipur (2009)
 - Indore (2013)
 - Hubballi (2020)

Pune Municipal Corporation Jaipur Development Authority Atal Indore City Transport Services HDBRTS Co. Ltd / DULT

Multi-vendor support through Technology Partners (6nos.) Turnkey implementations by Technology Partners at various Indian cities

Kanpur

Jammu

Srinagar

Faridabad

- Bhubaneswar
- Patna
- Gwalior
- Ahmedabad
- Surat Agartala

Implementation sites of WiTraC

10

CDAC - Keltron Junction, Trivandrum – October 2011

Vellayambalam Junction, Trivandrum – April 2012

Indore

7/27/2021 Savarkar Bhawan Junction, Pune – June 2012

Emergency Service Vehicle Priority System

- Smooth passage of Emergency Vehicles
- Respond quickly and safely to emergency situations.
- Reduction in average travel time up to 48 %
- Achieve interoperability with most traffic light controllers
- Accommodate hills, curves and extended distances without additional detectors

• RF ID based

- Huge Infrastructure required
- High Implementation cost
- Hectic to get Permission from local authorities

GPS and Server based

- Network delays
- Network failures.

- GNSS and Radio frequency based local solution
- Geo fencing for resolving vehicle position
- Easy installation
- No permission hazels
- No network failures and delays
- Ensures safety

 Mounted on the dash board of the Emergency Vehicle

Controller Unit(CU)

• Mounted in side the traffic controller box

Intelligent Transportation and Networking Section One Vísíon. One Goal... Advanced Computing for Human Advancement...

Field implementation

- Installed EmSerV Controller Unit in Kumarapuram Junction, Thiruvananthapuram
- Installed VMU in one of the ambulance of KIMS Hospitals, Thiruvananthapuram
- System is operational from 15th
 December 2017.

EmSerV – Delay Analysis by NATPAC

• Date :11th January 2018

:

- Time : 8:00 A.M to 7:00 P.M
- Done by
- Transport Planner, NATPAC & CDAC
- Study Results :Reduction in average travel time up to 48 %

IPMS Components

- 1.Entry Gate Sub system
- 2. Parking Lot Sub System
- 3.Exit Gate Sub system
- 4.Parking Navigation and
- Driver Guidance Sub system
- 5.Communication

infrastructure

Web source

Web source

System Architecture

Une Vision. One Goal... Advanced Computing for Human Advancement...

Hardware components

Bay Sensor

Indicator lamp

Data Concentrator

Entry Exit Hardware

Entry Gate display - Indoor

VMS Software Integration

- Serial communication
 - Entry gate display
 - Level display
- GPRS communication
 - Outdoor display

Level display - Indoor

Implementation Site

Location : Haribhau Car park, Narayan Peth, Pune

No. of levels : 6 (including roof top)

Capacity : 192 Cars

Bay sensor & Indicator lamps

First Floor with bay indicators

Red Light Violation Detection System

- Identifies red light violations at signalized road traffic junctions
- Generates digital evidence of the violation
- Retrieves License Plate details from the image of the red running vehicle
- Retrieves registered owner details of the red running vehicle from RTO database
- Generate tickets
- Presents ticket for verification before dispatch

Typical Evidence

- Industrial grade hardware
- Local storage
- Vehicle sensor input (48 channel)
- Red Channel input (12 channel)
- Junction client software

Features and challenges

Features

- One controller per junction
- Simultaneous monitoring of multiple arms
- Universal interface to tap Red signal
- Universal interface for vehicle detectors
- Violation image extraction from video
- Local storage
- Integrated evidence

Challenges

• ALPR accuracy in Indian conditions with different fonts / language /types of number plates

Pedestrian friendly signals - PeSCo

Improved version of Accessible Pedestrian friendly Signal

-Conventional APS register pedestrian demand only through Pushbutton Switch

-PeSCo APS addresses pedestrian demands additionally through RFID, Smart cane sensor, Braille keypad

- PeSCo identifies different class of pedestrians crossing the motorway and regulates the crossing time accordingly
 - Normal
 - Differently Able
 - Physically Challenged
 - Visually Challenged
 - Other needy people
 - Elderly, Women, Children

Typical Installation

Live Web interface of PeSCo

PeSCo Field Implementation

Govt. School for Visually Impaired, Thiruvananthapuram (GSVT)

Pedestrian mid-block in front of Govt. Girls' Higher Secondary School, Cotton Hill, Thiruvananthapuram

